Implementation of Scientific Computing Applications on the Cell Broadband Engine processor

Guochun Shi, Volodymyr Kindratenko

National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign
Three scientific applications

- Nanoscale Molecule Dynamics (NAMD)
 - James Philips from Theoretical and Computation Biophysics group, UIUC

- MIMD Lattice Computation (MILC)
 - Steven Gottlieb from physics department, Indiana University

- Electron Repulsion Integral (ERI) in quantum chemistry
 - Ivan S. Ufimtsev, Todd J. Martinez, Chemistry department, UIUC
Presentation outline

• Introduction
 • Cell Broadband Engine
 • Target Applications
 1. NAnoscale Molecule Dynamics (NAMD)
 2. MIMD Lattice Computation (MILC) collaboration
 3. Electron Repulsion Integral (ERI) in quantum chemistry
 • In-house task library and task dispatch system

• Implementation and performance
 • Application porting and optimization

• Summary
• Conclusions
Cell Broadband Engine

- One Power Processor Element (PPE) and eight Synergistic Processing Elements (SPE), each SPE has 256 KB local storage
- 3.2 GHz processor
- 25.6 GB/s processor-to-memory bandwidth
- > 200 GB/s EIB sustained aggregate bandwidth
- Theoretical peak performance of 204.8 GFLOPS (SP) and 14.63 GFLOPS (DP)
In-house task library and dispatch system

Compute task struct

```c
typedef struct task_s {
    int cmd; // operand
    int size; // the size of task structure
} task_t;
```

```c
typedef struct compute_task_s {
    task_t common;
    int spu_task_spu_run(task_t * task); // start a task in one SPE
    int spu_task_spu_wait(void); // wait for any SPE to finish, blocking call
    void ppu_task_spu_waitall(void); // wait for all SPEs to finish, blocking all
} compute_task_t;
```

API for PPE and SPE

- `int ppu_task_init(int argc, char **argv, spe_program_handle_t); // initialization`
- `int ppu_task_run(volatile task_t * task); // start a task in all SPEs`
- `int ppu_task_spu_run(volatile task_t * task, int spe); // start a task in one SPE`
- `int ppu_task_spu_wait(void); // wait for any SPE to finish, blocking call`
- `void ppu_task_spu_waitall(void); // wait for all SPEs to finish, blocking all`
- `int spu_task_init(unsigned long long);`
- `int spu_task_register(dotask_t, int); // register a task`
- `int spu_task_run(void); // start the infinite loop, wait for tasks`

Task dispatch system in NAMD

1. **pool of idle SPEs**
2. **pool of patch pairs to be processed**
3. **remove patch pair from the pool**
4. **run pair-compute task on the idle SPE**
5. **wait until all SPU tasks exit**

Flowchart:
- Start
- Find idle SPE
 - Yes: Find a dependency-free patch pair
 - Yes: Remove patch pair from the pool
 - No: Stop
 - No: Ppu_task_spe_wait()
 - No: Stop
NAMD

- Compute forces and update positions repeatedly
- The simulation space is divided into rectangular regions called patches
 - Patch dimensions > cutoff radius for non-bonded interaction
- Each patch only needs to be checked against nearby patches
 - Self-compute and pair-compute
NAMD kernel

NAMD SPEC 2006 CPU benchmark kernel

1: for each atom \(i \) in patch \(p_k \)
2: for each atom \(j \) in patch \(p_l \)
3: if atoms \(i \) and \(j \) are bonded, compute bonded forces
4: otherwise, if atoms \(i \) and \(j \) are within the cutoff distance, add atom \(j \) to the \(i \)'s atom pair list
5: end
6: for each atom \(k \) in the \(i \)'s atom pair list
7: compute non-bonded forces (L-J potential and PME direct sum, both via lookup tables)
8: end
9: end

We implemented a simplified version of the kernel that excludes pairlists and bonded forces

1: for each atom \(i \) in patch \(p_k \)
2: for each atom \(j \) in patch \(p_l \)
3: if atoms \(i \) and \(j \) are within the cutoff distance
4: compute non-bonded forces (L-J potential and PME direct sum, both via lookup tables)
5: end
6: end
NAMD Implementation: SPU

- SIMD: each component is kept in a separate vector
- Data movement dominates the time
- Buffer size carefully chosen to fit into the local store

Local store usage

<table>
<thead>
<tr>
<th></th>
<th>Code (KB)</th>
<th>L-J table (KB)</th>
<th>Table_four (KB)</th>
<th>Atom_buffer (KB)</th>
<th>Force buffer (KB)</th>
<th>Stack others</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>25</td>
<td>55</td>
<td>45</td>
<td>30</td>
<td>18</td>
<td>83</td>
</tr>
<tr>
<td>DP</td>
<td>25</td>
<td>55</td>
<td>91</td>
<td>48</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>

Data movement for distance computation (SP case)
Implementation: optimizations

- Different vectorization schemes are applied in order to get best performance
 - Self-compute: do redundant computations and fill zeros to unused slots
 - Pair-compute: save enough pairs of atoms, then do calculations
NAMD Performance: static analysis

- Distance computation code takes most of the time
- Data manipulation time is significant
NAMD Performance

Scaling and speedup of the force-field kernel as compared to a 3.0 GHz Intel Xeon processor

• 13.4x speedup for SP and 11.6x speedup for DP compared to a 3.0 GHz Intel Xeon processor
• SP performance is < 2x better than DP
MILC Introduction

- MILC studies large scale numerical simulations to study quantum chromodynamics (QCD), the theory of the strong interactions of subatomic physics.

- Large cycle consumer of supercomputers

- Our target application
 - dynamical clover fermions (clover_dynamical) using the hybrid-molecular dynamics R algorithm

- Our view of the MILC applications
 - A sequence of communication and computation blocks

Diagram:

- CPU
 - MPI scatter/gather for loop 2
 - compute loop 1
 - MPI scatter/gather for loop 3
 - compute loop 2
 - MPI scatter/gather for loop $n+1$
 - compute loop n
 - MPI scatter/gather

Original CPU-based implementation
MILC Performance in PPE

- Step 1: try to run it in PPE
- In PPE it runs approximately ~2-3x slower than modern CPU
- MILC is bandwidth-bound
- It agrees with what we see with stream benchmark
10 of these subroutines are responsible for >90% of overall runtime

- su3mat_copy, i.e. memcpy responsible for nearly 20% of all runtime
- All kernels responsible for 98.8%
MILC: Kernel memory access pattern

- Neighbor data access taken care of by MPI framework
- In each iteration, only small elements are accessed
 - Lattice size: 1832 bytes
 - su3_matrix: 72 bytes
 - wilson_vector: 96 bytes
- Challenge: how to get data into SPU's as fast as possible?
 - Data is nonaligned
 - Daa is not multiple of 128 bytes

```c
#define FORSOMEPARITY(i,s,choice) \
  for( i=((choice)==ODD ? even_sites_on_node : 0 ),  \
       s= &(lattice[i]); i< ( (choice)==EVEN ? even_sites_on_node : sites_on_node); \
       i++,s++)

FORSOMEPARITY(i,s,parity) {
  mult_adj_mat_wilson_vec( &(s->link[nu]), ((wilson_vector *)F_PT(s,rsrc)), &rtemp );
  mult_adj_mat_wilson_vec( (su3_matrix *)(gen_pt[1][i]), &rtemp, &(s->tmp) );
  mult_mat_wilson_vec( (su3_matrix *)(gen_pt[0][i]), &(s->tmp), &rtemp );
  mult_mat_wilson_vec( &(s->link[mu]), &rtemp, &(s->tmp) );
  mult_sigma_mu_nu( &(s->tmp), &rtemp, mu, nu );
  su3_projector_w( &rtemp, ((wilson_vector *)F_PT(s,lsrc)), 
                 ((su3_matrix*)F_PT(s.mat)) );
}
```

One sample kernel from udadu_mu_nu() routine

lattice site 0

Data from neighbor

Data accesses
Approach I: packing and unpacking

- Good performance in DMA operations
- Packing and unpacking are expensive in PPE
Approach II: Indirect memory access

- Replace elements in struct site with pointers
- Pointers point to continuous memory regions
- PPU overhead due to indirect memory access
Approach III: Padding and small memory DMAs

- Padding elements to appropriate size
- Padding struct site to appropriate size
- Gained good bandwidth performance with padding overhead
- Su3_matrix from 3x3 complex to 4x4 complex matrix
 - 72 bytes \rightarrow 128 bytes
 - Bandwidth efficiency lost: 44%
- Wilson_vector from 4x3 complex to 4x4 complex matrix
 - 98 bytes \rightarrow 128 bytes
 - Bandwidth efficiency lost: 23%
MILC struct site padding

- 128 byte stride access has different performance
- This is due to 16 banks in main memory
- Odd numbers always reach peak
- We choose to pad the struct site to 2688 (21*128) bytes
MILC Kernel performance

- GFLOPS are low for all kernels
- Bandwidth is around 80% of peak for most of kernels
- Kernel speedup compared to CPU for most of kernels are between 10x to 20x
- set_memory_to_zero kernel has ~40x speedup
- Memcpy speedup >15x
MILC Application performance

- Single Cell Application performance speedup
 - ~8–10x, compared to Xeon single core

- Profile in Xeon
 - 98.8% parallel code, 1.2% serial code speedup
 - 67-38% kernel SPU time, 33-62% PPU time of overall runtime in Cell

⇒ PPE is standing in the way for further improvement
Introduction – Quantum Chemistry

- Two basic questions in Chemistry*:
 1. Where are the electrons?
 2. Where are the nuclei?

 Quantum Chemistry focuses the first question by solving the time-independent Schrödinger equation to get the electronic wave functions. And the absolute square is interpreted as the probability distribution for the positions of the electrons.

- The probability distribution function is usually expanded to Gaussian type basis functions.

- To find the coefficients in the above expansion, we need do lots of two electron repulsion integrals

\[\chi_\mu(\vec{r}) \propto (x-x_\mu)(y-y_\mu)(z-z_\mu)^n \exp\left(-\alpha_\mu |\vec{r}-\vec{R}_\mu|^2\right) \]

Gaussian type basis functions

\[(\mu \nu | \lambda \sigma) = \int \int \chi_\mu(\vec{r}_1) \chi_\nu(\vec{r}_1) \chi_\lambda(\vec{r}_2) \chi_\sigma(\vec{r}_2) \frac{d\vec{r}_1 d\vec{r}_2}{|\vec{r}_1-\vec{r}_2|} \]

two Electron Repulsion Integral (ERI)

* http://mtzweb.scs.uiuc.edu/research/gpu/
Introduction – Electron Repulsion Integral (ERI)

Reference CPU implementation

\[
\text{for (s1 = startShell; s1 < stopShell; s1++)}
\text{for (s2 = s1; s2 < totNumShells; s2++)}
\text{for(s3 = s1; s3 < totNumShells; s3++)}
\text{for(s4=s3; s4 < totNumshells; s4++)}
\text{
\quad \text{for (p1=0;p1< numPrimitives[s1]; p1++)}
\quad \text{for (p2=0;p2< numPrimitives[s2]; p2++)}
\quad \text{for (p3=0;p3< numPrimitives[s3]; p3++)}
\quad \text{for (p4=0;p4< numPrimitives[s4]; p4++)}
\quad \{
\quad \quad \ldots
\quad \quad H_ReductionSum[s1,s2,s3,s4] += \sqrt{F_PI*rho} *
\quad \quad I1*I2*I3*Weight*Coeff1*Coeff2*Coeff3*Coeff4;
\quad \}\}
\]

- Four outer loops sequence through all unique combinations of electron shells
- Four Inner loops sequence through all shell primitives
- The primitives \([ss|ss]\) are computed and summed up in the core code.

The general form for \([ss|ss]\) integral

\[
\langle \mu \nu | \lambda \sigma \rangle = \sum_{p=1}^{N_x} \sum_{q=1}^{N_y} \sum_{r=1}^{N_z} \sum_{s=1}^{N_t} d_{\mu p} d_{\nu q} d_{\lambda r} d_{\sigma s} [p q | r s]
\]

where

\[
[s_1 s_2 | s_3 s_4] = \frac{\pi^{3/2} K_{12} (\overline{R}_{12}) K_{34} (\overline{R}_{34}) F_0 \left(\frac{AB}{A+B} [\overline{R}_P - \overline{R}_Q]^2 \right)}{AB \sqrt{A+B}}
\]

\[
K_{ij} (\overline{R}_{ij}) = \exp \left(-\frac{\alpha_i \alpha_j}{\alpha_i + \alpha_j} [\overline{R}_i - \overline{R}_j]^2 \right)
\]

\[
A = \alpha_1 + \alpha_2, \quad B = \alpha_3 + \alpha_4, \quad F_0(t) = \frac{\text{erf}(\sqrt{t})}{\sqrt{t}}
\]

\[
\overline{R}_{kl} = \overline{R}_k - \overline{R}_l, \quad \overline{R}_P = \frac{\alpha_1 \overline{R}_1 + \alpha_2 \overline{R}_2}{A}, \quad \overline{R}_Q = \frac{\alpha_3 \overline{R}_3 + \alpha_4 \overline{R}_4}{B}
\]
Porting to Cell B.E. – load balance

- Function offload programming
- Each SPE is assigned a range of \((s1,s2,s3,s4)\) to work on.
- Load balance Computation in PPE
 - Each primitive integral roughly has the same amount of computation
 - Each contracted integral may have different amount of computation
 - Each iteration in outer most loop has different amount of computation
 - PPE must compute the amount of computation before SPEs run

```c
for (s1 = startShell; s1 < stopShell; s1++)
    for (s2 = s1; s2 < totNumShells; s2++)
        for (s3 = s1; s3 < totNumShells; s3++)
            for (s4 = s3; s4 < totNumShells; s4++)
                for (p1 = 0; p1 < numPrimitives[s1]; p1++)
                    for (p2 = 0; p2 < numPrimitives[s2]; p2++)
                        for (p3 = 0; p3 < numPrimitives[s3]; p3++)
                            for (p4 = 0; p4 < numPrimitives[s4]; p4++)
                                {
                                    ....
                                    H_ReductionSum[s1,s2,s3,s4] += sqrt(F_PI*rho)*I1*I2*I3*Weight*Coeff1*Coff2*Coff3*Coff4;
                                }
```
SPE kernels

- Is local store enough:
 - Input data: an array of coordinates + an array of shells + an array of primitives < 32 KB
 - The Gauss error function -- erf() -- is evaluated by interpolating table. The table size is < 85KB
 - We have enough local store

- Precomputing is necessary to reduce redundant computation
 - Precomputed intermediate results are much larger than local store
SPE kernel -- precompute

- Instead of computing every primitive integrals from equations, we precompute pairwise quantities and store them in main memory

- DMA all pairwise quantities before computing a contracted integral

- Precomputed quantities:
 \[
 \begin{align*}
 &\alpha_1 + \alpha_2 \\
 &d_1 d_2 \left(\frac{\pi}{\alpha_1 + \alpha_2} \right)^{3/2} e^{-\alpha_1 \alpha_2 (\alpha_1 + \alpha_2) \tilde{R}_{ij}^2} \\
 &\left(\alpha_1 \tilde{R}_i + \alpha_2 \tilde{R}_j \right) / (\alpha_1 + \alpha_2)
 \end{align*}
 \]

- Trade bandwidth with computation
SPE kernel – inner loops optimizations

- Naïve way of SIMDing kernel
 - Use a counter to keep track of the number of primitive integrals
 - If counter >= 4, do a 4-way computation
- Loop switch
 - If one of the loops' length is multiple of 4, we switch the loop to the innermost
 - Advance in increment of 4, and get rid of counter
- Loop unrolling
 - If the numPrimitives are the same for all primitive integral and the happened to be some nice number
 - Completely unroll the inner loops generate the most efficient code

```
for (p1=0; p1< numPrimitives[s1]; p1++)
for (p2=0; p2< numPrimitives[s2]; p2++)
for (p3=0; p3< numPrimitives[s3]; p3++)
for (p4=0; p4< numPrimitives[s4]; p4++)
{
  static int count = 0;
  count++;
  if (count == 4){
    compute 4 primitive integrals using SIMD intrinsics
  }
}
```

Naïve implementation of SIMD kernel

```
......
DMA in precomputed pair quantities.
```

```
for (p4=0; p4< numPrimitives[s4]; p4++)
for (p3=0; p3< numPrimitives[s3]; p3++)
for (p2=0; p2< numPrimitives[s2]; p2++)
for (p1=0; p1< numPrimitives[s1]; p1+=4)
{
  Compute 4 primitive integrals in SIMD intrinsics
}
```

Loop switch: loop1 length is multiples of 4, switch loop1 and loop4
Performance results

<table>
<thead>
<tr>
<th></th>
<th>Model1</th>
<th>Model2</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Atoms</td>
<td>30</td>
<td>64</td>
</tr>
<tr>
<td>Basis set</td>
<td>6-311G</td>
<td>STO-6G</td>
</tr>
<tr>
<td># of integrals</td>
<td>528,569,315</td>
<td>2,861,464,320</td>
</tr>
<tr>
<td># of reduction elements</td>
<td>3,146,010</td>
<td>2,207,920</td>
</tr>
<tr>
<td>Xeon (2.33Ghz)</td>
<td>21.04</td>
<td>112.55</td>
</tr>
<tr>
<td>Cell-blade (16 SPEs)</td>
<td>1.1</td>
<td>0.92</td>
</tr>
<tr>
<td>Speedup</td>
<td>19x</td>
<td>122x</td>
</tr>
</tbody>
</table>

- Model1 is 10 water molecules (30 atoms in total), model2 is 64 hydrogen atom arranged in lattice.
- Model1 has non-uniform contracted integral intensity, ranging from 4096 to just 1 primitive integrals.
 - Loop switching is not always possible ➔ naïve SIMD implementation ➔ more control overhead
 - Loop unrolling is not possible since the # of iterations in each inner loop changes
 - Precomputing proves to slow down due to DMA overhead
- Model2 uniform computation intensity
 - Precomputing and loop unrolling proves to be efficient
 - Module outperforms GPU implementation*

Summary

<table>
<thead>
<tr>
<th></th>
<th>Ported code</th>
<th>Precision</th>
<th>Performance</th>
<th>Limit factor</th>
<th>Cell Blade to single core speedup¹</th>
<th>Cell blade to Xeon blade speedup²</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAMD</td>
<td>Modified kernel</td>
<td>SP,DP</td>
<td>Computation</td>
<td>22-26x</td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>MILC</td>
<td>application</td>
<td>SP</td>
<td>Bandwidth</td>
<td>10-12x</td>
<td>1.5-4.1x</td>
<td></td>
</tr>
<tr>
<td>ERI</td>
<td>Kernel</td>
<td>SP</td>
<td>Computation</td>
<td>19-122x</td>
<td>NULL</td>
<td></td>
</tr>
</tbody>
</table>

1. CPU comparing core for NAMD 3.0Ghz Xeon, for MILC and ERI it is 2.33 Ghz Xeon

2. One Xeon blade contains 8 cores with 2MB L2 cache per core.
Lessons learned

• Keep code on PPE to a minimum
 • 1.2% runtime code ➔ 33-62% in PPE in MILC

• Find out the limiting factor in the kernel and work on it
 • MILC is bandwidth limited and we focus on improving the usable bandwidth
 • NAMD and ERI is compute-bound and we focus on optimizing the SIMD kernel.

• Sometimes we can trade bandwidth with computation or vice versa
 • In ERI, depends on input data, we can either precompute some quantities in PPE and DMA in or do all computation in SPEs

• Application data layout in memory in critical
 • Padding would not be necessary if MILC is field centered ➔ improvement of performance and productivity
 • Proper data layout makes SIMDizing kernel code easier and make it faster
Thank You

• Questions?