Common Software Models and Platform for Cell and SpursEngine

July 11, 2008

Seiji Maeda

Advanced SoC Development Center
Toshiba Corporation, Semiconductor Company
Outline

- Cell Family and New Topics
- Introduction of SpursEngine
- Emerging Use Cases
- Common Models and Platform
- Call for Participation

SpursEngine is a trademark of Toshiba Corp.
SpursEngine is also known as Toshiba Quad HD Processor.
Continuous Expansion of Cell World

- We already have 3 chips to encourage the Cell World
 - Cell/B.E. is shipped in PS3 by SCEI and QS2x by IBM
 - SpursEngine by Toshiba for PC market is announced
 - PowerXCell and QS22 by IBM are also announced

Cell/B.E. is a trademark of Sony Computer Entertainment Inc. PowerXCell is a trademark of IBM.
SPE Accelerates General Purpose Cores

- PPE in Cell & PowerXCell is accelerated by 8 SPEs
 - 6 SPEs are available for user program in PS3
- x86 in PC is accelerated by 4 SPEs in SpursEngine
 - SpursEngine is mainly for an accelerator of PC platform

⇒ SPE is a key component of Cell family processors
Connectivity of Other Systems

- Cell World must not become an isolated world
 - We should create natural path to connect Cell processors and existing other systems
- Considering general systems is very natural for both system suppliers and end users
 - In desktop computing market, PC is virtually the standard platform around the world
 - Even in HPC market, it is natural that users would like to connect super computers to general servers and clients
 - End users might have at least one or more PCs before getting Cell-accelerated systems
SPE Extends General Systems

- Cell & PowerXCell Blades (QS2x) can be connected to x86-based blades
- SpursEngine can be connected to x86-based PC
 ➔ Connectivity to general systems becomes more important
Outline

- Cell Family and New Topics
- Introduction of SpursEngine
- Emerging Use Cases
- Common Models and Platform
- Call for Participation
SpursEngine Concept

- Media processing accelerator derived from Cell/B.E.
 - 4 SPEs in SpursEngine are fully compatible to those of Cell/B.E.
- Supports Full-HD digital life efficiently
 - Hardware CODECs of standard formats are embedded in the same chip

XIO is a trademark of Rambus Inc.
SpursEngine and Cell/B.E.

- SpursEngine is optimized to HD contents and PC market inheriting Cell/B.E. DNA

Cell/ B.E.

Media Processors
- SPE
- SPE
- SPE
- SPE

- Image Recognition
- Video Processing
- Decode
- Encode

PPE

SpursEngine

Media Processors
- SPE
- SPE
- SPE
- SPE

- Image Recognition
- Video Processing

Hardware CODECs
- MPEG-2 DEC
- H.264 DEC
- MPEG-2 ENC
- H.264 ENC

Co-processor
- General Host

Hardware for Fixed Features
- Flexibility & Performance

- Low power

Interfaces
- PCI Express

General Purpose Processors

Flexibility & Performance

Cell/B.E. DNA

Cell/B.E. DNA

Hardware for Fixed Features

Low power

Co-processor

General Host
SpursEngine Block Diagram

XDR memory bandwidth
- 6.4 GB/s (1 pcs XDR)
- ~12.8 GB/s (2 pcs XDR) bi-direction

PCI-Express
Max 4 lanes
In : 1GB/s
Out: 1GB/s

Media Processors
SPE
H.264
MPEG-2

Hardware CODECs

Interfaces
DMAC
controller
XIO
PCI Express
Host

XIO and XDR are trademarks of Rambus Inc.
Existing Applications

- SpursEngine realizes these applications

 - Face Motion Capture
 - Gesture Recognition
 - Face Detection
 - Super Resolution
Software Platform

- For easy to use, application can use middleware
 - Middleware internally utilizes SPEs and HW CODECs
- For programmability, application can execute own programs
 - Using system software, SPEs can be controlled directly

![Software Platform Diagram]

- User Programs
 - MW Programs
 - SPE Programs
- System Software on Host System
- System Software on SpursEngine
- Media Processors
 - MPEG-2 DEC
 - MPEG-2 ENC
 - H.264 DEC
 - H.264 ENC
- Control Programs for CODECs

MW Programs
Compatibility of SpursEngine

- SPU ISA is completely identical
 - Both Cell/B.E. and SpursEngine support SPU ISA 1.0
 - SPU MFC (DMA engine) is also compatible
 - SPE compilers can be used for SpursEngine
- Performance is different
 - SPEs on Cell/B.E. run at 3.2 GHz, but those of SpursEngine run at 1.0 - 1.6 GHz
 - Cell/B.E. has 8 SPEs, but SpursEngine has 4 SPEs
- General purpose processor might be different
 - It is natural for us to consider x86-based systems in addition to PowerPC-based systems
- SPE programs might be better when they are scalable and independent from general purpose processors
Outline

- Cell Family and New Topics
- Introduction of SpursEngine
- Emerging Use Cases
- Common Models and Platform
- Call for Participation
Expansion of Possible Platforms

- According to the extension of Cell family, we should regard the following platforms as possible platforms in addition to Cell/B.E. standalone:
 - General Purpose Processor (GPP) + Cell/B.E.
 - GPP + SpursEngine

- Possible OSes might include Linux/x86 for servers and Windows for PCs:
 - Linux/PPC is no longer the only platform for Cell
 - SPE programs should be host-OS independent

- Possible interconnects between GPP and Cell derivatives might be narrower than internal buses:
 - Ethernet might be possible in addition to PCI-express
 - Programmer should consider the narrow path
Use Case #1: SPEs as Accelerators

- Heavy media processing such as HD CODECs and pattern recognition might be implemented by powerful SPEs
 - Data packets streams between GPP and SPEs
- Heavy library might be off-loaded to accelerated library powered by SPEs
 - User application calls accelerated library with RPC fashion
Example: High Speed Trans-coding

- Accelerate trans-coding using multiple Cells
 - Client sends MPEG-2 video packets to multiple Cell servers and gather H.264 video packets from the servers
 - Cell servers trans-code video from MPEG-2 to H.264
- All video data are transmitted via Ethernet

7 Cell/B.E. enables 7 times faster full HD trans-coding
Use Case #2: SPEs as Main Processors

- Applications might be designed and implemented on SPEs and use GPP for system services
 - Applications might be ported from GPP and some library might remain on GPP for efficiency
- Hybrid system might offer library on both GPP and SPEs
 - Some libraries can be accelerated by SPEs
Example: SPE Application Using OpenGL

- SPE Application directly call OpenGL API
 - GPP handles the requests and draw image on screen
- It is possible that OpenGL is implemented on other SPEs
 - GPP only handles I/O requests to frame buffer
Outline

- Cell Family and New Topics
- Introduction of SpursEngine
- Emerging Use Cases
- Common Models and Platform
- Call for Participation
Possible Cell Software Architectures

- Architecture shouldn’t be limited but the following architecture is efficient for current implementations
 - GPP might communicate with one or more SPE clusters using narrow interconnects such as Ethernet
 - In each cluster, all SPEs might be connected by high speed interconnect and shared memory
Simple Views for Programmers

- Complicated interactions between GPP and SPE shouldn’t be always required
 - SPU programmers implement programs using SPU programming environment such as SPU task model and runtime
 - GPP programmers implement programs using general environment such as POSIX thread and standard OSes
 - Interconnect transfers data between GPP and SPU programs
Common Models and Platforms

- Considering use cases and software architectures, the following models and platform should be standardized for software compatibility

Common Models:
- GPP-Cluster communication model
- SPU-centric programming model

Common Platform:
- Common communication infrastructure
- Common SPU runtime
GPP-Cluster Communication Models

Stream Processing Model
- Sending and receiving packetized data continuously
- Suitable for multi-media processing
- SPE fits this model very well

Remote Procedure Call Model
- Sending request and receiving result
- Suitable to implement accelerated libraries
- Libraries can be implements on suitable processors
SPU-centric Programming Models

Accelerated Library Model
- Only library routines are running on SPEs
- Applications call libraries via RPC infrastructure

SPE Application Model
- Main routines are running on SPEs
- System services especially I/O are handled by GPP

Hybrid Model
- Main routines are running on SPEs
- Some libraries are accelerated by other SPEs
- Remained services are handled by GPP
Reference Software Stack of Common Platform

- Common communication infrastructure consists of RPC system and data transport layer
- Common SPU runtime consists of SPU micro-kernel and SPU runtime library
Common Communication Infrastructure

- Data transport layer transfers data between GPP memory and SPE memory (a.k.a. XDR DRAM)
 - Data are transferred between SPE memory and LS by DMAC
- RPC infrastructure delegates function calls to servers
 - RPC stub marshals arguments and RPC skeleton de-marshals the arguments
 - Data pointed by the arguments in addition to the marshaled arguments are transferred by data transport layer
Common SPU Runtime

- GPP program can manage SPU program using SPU runtime library on GPP
 - GPP program might be application or SPU program loader
- SPU micro-kernel on SPU can be extended by policy managers such as task manager
 - Task manager enables multi-tasking model on SPU
Scalability of SPU Programs

- Common SPU runtime might offer scalability of SPU program
 - Multiple tasks should be executed by multiple SPEs
 - All tasks should be scheduled without interactions to GPP
- MARS by Sony is the best candidate
 - Suits the requirements of common SPU runtime
 - Please listen the next presentation!
Benefits of Common Platform

- Your can make SPU programs GPP independent
 - Common communication infrastructure standardizes interactions between GPP and SPE
- You can select one or more preferring programming models for SPU programs
 - Common SPU runtime can be extended to support suitable programming models
- You can reuse your application and library running on SPE across all Cell family processors
 - All your efforts on one platform are preserved on other platforms
Call for Participation

- Please quit “reinvention of the wheel”
 - Please join us to create common environment
 - Please stop developing environment, but feedback to common environment instead
 - Please focus on your actual applications

- Please look forward to enjoying compatibility
 - Firstly, write your code using PS3 or CRS (Toshiba’s Cell Reference Set)
 - Then, scale up to high performance computing world using QS22 or later blades without any modification
 - And, make available to PC users using SpursEngine!
Questions?

Common platform:
- cbe-oss-dev@ozlabs.org

This presentation:
- seiji.maeda@toshiba.co.jp