Parallel Linear Algebra Software for Multi-Core Architectures (PLASMA) for the CELL BE

Georgia Tech CELL Workshop

June 18, 2007
Outline

- New goals for dense linear algebra on multi-core processors
- Hand-crafted code example
 - solving SPD systems of linear equations
- Automated code generation
 - DAG based execution with CELL SuperScalar
- New algorithmic approaches
 - Algorithms by tiles
Dense Linear Algebra Software Evolution

LINPACK
- Vector machines – BLAS 1, BLAS 2

LAPACK
- Cache-based machines – BLAS 3

ScaLAPACK
- Distributed memory machines – PBLAS, BLACS, MPI

PLASMA
- General framework for
 - Multi-core
 - CELL BE
 - distributed memory machines
The PLASMA Framework

PLASMA

➢ Mixed-precision algorithms to exploit SIMD ILP
➢ Dynamic DAG-based scheduling
➢ Non-blocking communication
➢ Algorithms by tiles
 ➢ Maximum locality
 ➢ Minimal synchronization
 ➢ High performance data representation (BDL)

New BLAS required
➢ Block Data Layout
➢ Focus on tile kernel performance
➢ Implementation of new operations
Exploiting SIMD ILP in Single Precision

Mixed-precision Iterative Refinement (SPD)

Solve: \(Ax = b, \) where \(A \) is SPD

\[
L L^T = \text{cholesky}(A) \quad \text{SINGLE} \quad O(n^3)
\]

\[
x = L \backslash (L^T \backslash b) \quad \text{SINGLE} \quad O(n^2)
\]

\[
r = b - Ax \quad \text{DOUBLE} \quad O(n^2)
\]

WHILE \(|| r || \) not small enough

\[
z = L \backslash (L^T \backslash r) \quad \text{SINGLE} \quad O(n^2)
\]

\[
x = x + z \quad \text{DOUBLE} \quad O(n^1)
\]

\[
r = b - Ax \quad \text{DOUBLE} \quad O(n^2)
\]

END
Algorithms by Tiles – Cholesky Factorization

\[T = T - A \times A^T \]
SYRK

\[T = LL^T \]
POTRF

\[C = C - B \times A^T \]
GEMM

\[C = C \setminus T \]
TRSM
Building Blocks – SIMD Tile Kernels

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cblas_sgemm()</td>
<td>330</td>
<td>9.0</td>
<td>spu-gcc -Os</td>
<td>22.78</td>
<td>23.01</td>
</tr>
<tr>
<td>CblasRowMajor,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CblasNoTrans, CblasTrans,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64, 64, 64,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.0, A, 64, B, 64, 1.0, C, 64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cblas_syrk()</td>
<td>160</td>
<td>4.7</td>
<td>spuxlc -O3</td>
<td>13.23</td>
<td>20.12</td>
</tr>
<tr>
<td>CblasRowMajor,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CblasLower, CblasNoTrans,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64, 64, -1.0, A, 64, 1.0, C, 64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cblas_strsm()</td>
<td>310</td>
<td>8.2</td>
<td>spuxlc -O3</td>
<td>16.47</td>
<td>15.91</td>
</tr>
<tr>
<td>CblasRowMajor,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CblasRight, CblasLower,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CblasTrans, CblasNonUnit,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64, 64, 1.0, T, 64, B, 64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lapack_spotrf()</td>
<td>340</td>
<td>4.1</td>
<td>spu_gcc -O3</td>
<td>15.16</td>
<td>5.84</td>
</tr>
<tr>
<td>lapack_lower,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64, trans(A), 64, &info;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Real men program in assembly
Dependencies expressed by the DAG are enforced on a tile basis:

- fine-grained parallelization
- flexible scheduling
Pipelining & Double Buffering

Result:
- Minimum load imbalance,
- Minimum dependency stalls,
- Minimum memory stalls (no waiting for data).

Pipelining:
- Between loop iterations.

Double Buffering:
- Within BLAS,
- Between BLAS,
- Between loop iterations.
Cholesky Factorization (SPOTRF)

Graph showing performance in Gflop/s as a function of size. Key points:

- **SP peak**: 204 Gflop/s
- **SGEMM peak**: 184 – 192 with assembly SGEMM kernel
- **DP peak**: 14 Gflop/s

- 384×384 → >50 Gflop/s
- 512×512 → ~90 Gflop/s
- 640×640 → >110 Gflop/s
- 1024×1024 → >150 Gflop/s
- 2304×2304 → >170 Gflop/s
- 1536×1536 → 90% peak of SGEMM
- 4096×4096 → 95% peak of SGEMM
Triangular Solve (STRSV)

- Compute-bound operations of the factorization (SPOTRF) get close to the peak floating point performance.
- Memory-bound operations of the refinement (STRSV) get close to the peak memory bandwidth.
Performance – CELL Blade

Gflop/s vs Size

SP peak

SGEMM peak

SPOTRF

SPOSV

DSPOSV

DP peak
Performance – Playstation 3

- SP peak
- SGEMM peak
- SPOTRF
- SPOSV
- DSPOSV

Size vs. Gflop/s graph showing performance metrics for different operations.
The Need for Automation

```fortran
DO 20 J = 1, N, NB
 *
 * Update and factorize the current diagonal block and test
 * for non-positive-definiteness.
 *
    JB = MIN( NB, N-J+1 )
    CALL DSYRK( 'Lower', 'No transpose', JB, J-1, -ONE,
                 A( J, 1 ), LDA, ONE, A( J, J ), LDA )
    CALL DPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
    IF( INFO.NE.0 )
       GO TO 30
    IF( J+JB.LE.N ) THEN
        *
        * Compute the current block column.
        *
        CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
                    J-1, -ONE, A( J+JB, 1 ), LDA, A( J, J ),
                    LDA, ONE, A( J+JB, J ), LDA )
        CALL DTRSM( 'Right', 'Lower', 'Transpose', 'Non-unit',
                    N-J-JB+1, JB, ONE, A( J, J ), LDA,
                    A( J+JB, J ), LDA )
    END IF
20 CONTINUE
```

LAPACK FORTRAN 77
Cholesky factorization
➢ Roughly 20 lines

CELL Cholesky main
factorization routine
➢ Roughly 400 lines !!!

Some automation needed !!!
for (i = 0; i < DIM; i++) {
 for (j= 0; j< i-1; j++){
 for (k = 0; k < j-1; k++) {
 sgemm_tile(A[i][k], A[j][k], A[i][j]);
 }
 strsm_tile(A[j][j], A[i][j]);
 }
 for (j = 0; j < i-1; j++) {
 ssyrk_tile(A[i][j], A[i][i]);
 }
 spotrf_tile(A[i][i]);
}

void sgemm_tile(float *A, float *B, float *C)

void strsm_tile(float *T, float *B)

void ssyrk_tile(float *A, float *C)
for (i = 0; i < DIM; i++) {
 for (j = 0; j < i-1; j++) {
 for (k = 0; k < j-1; k++) {
 sgemm_tile(A[i][k], A[j][k], A[i][j]);
 }
 strsm_tile(A[j][j], A[i][j]);
 }
 for (j = 0; j < i-1; j++) {
 ssyrk_tile(A[i][j], A[i][i]);
 }
 spotrf_tile(A[i][i]);
}

#pragma css task input(A[64][64], B[64][64]) inout(C[64][64])
void sgemm_tile(float *A, float *B, float *C)

#pragma css task input(T[64][64]) inout(B[64][64])
void strsm_tile(float *T, float *B)

#pragma css task input(A[64][64], B[64][64]) inout(C[64][64])
void ssyrk_tile(float *A, float *C)
Cholesky – CELL SupeScalar – Performance

DAG construction on the fly

DAG construction before execution
Decompose a matrix into factors Q and R, where Q is unitary and R is upper triangular using Householder reflections

Decomposition:

$\leftarrow \text{DGEQR2} \begin{pmatrix} \text{block} \end{pmatrix} = \begin{pmatrix} \text{small } R \text{ (purple)} & \text{block of Householder reflectors (white)} \end{pmatrix}$

Factorize the panel – calculate small R (purple) and a block of Householder reflectors (white)
Block Algorithms – LAPACK QR Factorization

Decompose a matrix into factors Q and R, where Q is unitary and R is upper triangular using Householder reflections.

Update the trailing submatrix – apply the Householder reflectors to the submatrix to the right from the panel.

$\text{DLARFB}($ $)$ $=$
Tile Algorithms – PLASMA QR Factorization

Decompose a matrix into factors Q and R, where Q is unitary and R is upper triangular using Householder reflections.

$\text{DGEQR2}(\quad) = \quad$

Factorize the first tile – calculate small R (purple) and a small block of Householder reflectors (white).
Tile Algorithms – PLASMA QR Factorization

Decompose a matrix into factors Q and R, where Q is unitary and R is upper triangular using Householder reflections.

Update the first row of tiles.
Decompose a matrix into factors Q and R, where Q is unitary and R is upper triangular using Householder reflections.

Couple the first R with the first tile in the same column and compute the QR factorization.
Tile Algorithms – PLASMA QR Factorization

Decompose a matrix into factors Q and R, where Q is unitary and R is upper triangular using Householder reflections.

Update the two rows of tiles to the right.
Tile Algorithms – PLASMA QR Factorization

Decompose a matrix into factors Q and R, where Q is unitary and R is upper triangular using Householder reflections.

Couple the first R with the second tile in the same column and compute the QR factorization.

$\text{DGEQR2}() = \text{ }$
Tile Algorithms – PLASMA QR Factorization

Decompose a matrix into factors Q and R, where Q is unitary and R is upper triangular using Householder reflections.

Update the two rows of tiles to the right.
PLASMA QR Factorization DAG

Each node is a tile operation.
Future

➢ **CELL implementation of tile algorithms**
 ▶ Cholesky (done), LU, QR,
 ▶ Hessenberg, bi-diagonal, tri-diagonal reduction

➢ **Efficient DAG construction and execution**