A Unified Programming Model for Multicore CPUs and Many-Core Accelerators

Michael McCool

November 18, 2008
SC08, Austin TX
Performance
• Fully leverage the potential of all processors/cores
• Optimize use of memory bandwidth, hide latency

Portability
• Support hardware independent applications
• Automatic scalability to multiple parallelism mechanisms
• Exploit a variety of multi-core processors efficiently
• Use many-core accelerators when available

Programmability
• Simple extensions of existing practice
• Automate trivia, provide drill-down when needed
• Explicit control of important policy decisions
Apply functions to arrays:
- Application: \(C = f(A, B) \)
- May have control flow
- May perform random access into other arrays
- Can read and write to subarrays
- May have local arrays and function calls

Apply collective operations to arrays:
- Reduce: \(a = \text{reduce}(p, A) \)
- Gather: \(A = B[U] \)
- Scatter: \(A[U] = B \)
- Others: \(\text{scan, pack, combine, ...} \)

Use structured compositions of deterministic parallel patterns