Cell, Multi-core Programming, and Applications

Alex Chunghen Chow
Cell architecture

- **1 PPE**
 - VMX unit
 - L1, L2 caches
 - 2 way SMT

- **8 SPEs**
 - 128-bit SIMD instruction set
 - Register file – 128x128-bit
 - Local store – 256KB
 - Instruction execution latency

- **EIB + PPE L1/L2 + SPE MFCs**
 - Bus bandwidth
 - DMA latency
 - Memory address-ability

- **System memory**
 - Bandwidth 25.6GB/s
Cell/B.E. uses ½ the space & power vs traditional approaches

Example Dual Core
- 349mm², 3.4 GHz @ 150W
- 2 Cores, ~27.2 SP GFlops
- 65nm

Example Quad Core
- 214 mm², 3 GHz @ 130W
- 4 Cores, ~48 SP GFlops
- 45nm

Cell/B.E.
- 175 mm², 3.2 GHz
- 9 Cores, ~230 SP GFlops
- 65nm

On any traditional processor, shown ratio of cores to cache, prediction, & related items illustrated here remains at ~50% of area the chip area.

Intel’s x86 Quad Core processors are Dual Chip Modules (DCMs), 2 of these processor stacked vertically & packaged together.
Cell/B.E.‘s Heterogeneous Core architecture allows it to cover a greater range
General Software Programming Direction(s)

- Adopting open standards to achieve higher performance and still retain new multi-core software investments
 - OpenMP (Open Multi-processing)
 - A language/compiler directives to facilitate a compiler in generating parallel programs
 - OpenCL (Open Computing Language)
 - A language and environment for developing and running data and task parallel programs across heterogeneous cores

- A path to migrate legacy serial / parallel / distributed applications
 - Support legacy programming and execution environments / libraries - e.g.
 - Standard languages: C, C++, Fortran
 - Standard operating environment
 - POSIX (Portable Operating System Interface)
 - e.g. standardized pthread multi-threading support
 - MPI (Message Passing Interface)
 - Explicit communication library for distributed executing programs