Roadrunner - Integrated Hybrid Node

- LS21 AMD Host Blade
 - Dual socket dual core AMD Opteron
 - DDR2 direct attach DIMM
- Expansion Card
 - 2 HT2100 HT<->PCIe bridges
- CB2 Based Accelerator Blades
 - Dual Cell Sockets
 - DDR2 direct attach DIMM
- AMD Host to Cell eDP connectivity
 - Two x8 PCIe Host to QS22 links
PowerXCell 8i / AMD TriBlade (Dual Core Opteron, IB-DDR)

- **AMD Host Blade + Expansion**
 - Dual socket dual core AMD Opteron (2 x 7.2 GFLOPS)
 - LS21 + 2 by HT 16x connector
 - DDR2 direct attach DIMM channels
 - 8GB
 - 10.7 GB/s/socket (0.48 B/FLOP)
 - New Expansion Card
 - 2 HT2100 HT<->PCI-e bridges

- **CB2 Accelerator Blade**
 - Dual Cell Sockets
 - 204 GFLOPS @ 3.2Ghz (2 x 102 GFLOPS)
 - DDR2 direct attach DIMM channels
 - 8 GB
 - 25.6 GB/s per PowerXCell 8i chip* (0.25 B/FLOP)
 - AMD Host to PowerXCell 8i connectivity
 - Two x8 PCIe Host to CB2 links
 - ~2+2 GB/s/link → ~4+ 4 GB/s total POR

Note: DDR2 direct attach DIMM channels
Roadrunner is a petascale system in 2008

Full Roadrunner Specifications:

- 6,912 dual-core Opterons
- 49.8 TF DP peak Opteron
- 27.6 TB Opteron memory

- 12,960 Cell eDP chips
- 1.33 PF DP peak Cell eDP
- 2.65 PF SP peak Cell eDP
- 51.8 TB Cell memory
- 277 TB/s Cell memory BW

- 3,456 nodes on 2-stage IB 4X DDR
- 13.8 TB/s aggregate BW (bi-dir) (1st stage)
- 6.9 TB/s aggregate BW (bi-dir) (2nd stage)
- 3.5 TB/s bi-section BW (bi-dir) (2nd stage)

- 432 10 GigE I/O links on 216 I/O nodes
- 432 GB/s aggregate I/O BW (uni-dir) (IB limited)

- 18 CU clusters
- 12 links per CU to each of 8 switches
Roadrunner at a glance

Cluster of 18 Connected Units
- 6,912 AMD dual-core Opterons
- 12,960 IBM Cell eDP accelerators
- 49.8 Teraflops peak (Opteron)
- 1.33 Petaflops peak (Cell eDP)
- 1PF sustained Linpack

RHEL & Fedora Linux

SDK for Multicore Acceleration

xCAT Cluster Management
- System-wide GigEnet network

3.9 MW Power:
- 0.35 GF/Watt

Area:
- 296 racks
- 5500 ft²

InfiniBand 4x DDR fabric
- 2-stage fat-tree; all-optical cables
- Full bi-section BW within each CU
 - 384 GB/s (bi-directional)
- Half bi-section BW among CUs
 - 3.45 TB/s (bi-directional)
- Non-disruptive expansion to 24 CUs

80 TB aggregate memory
- 28 TB Opteron
- 52 TB Cell

216 GB/s sustained File System I/O:
- 216x2 10G Ethernets to Panasas
Hybrid Node System Software Stack

Application \[\rightarrow\] MPI

Accelerated Lib

ALF/DaCS

Host O/S DD

Opteron Blade

To other cluster nodes

Cell Blade

DaCSd

Accelerated Lib

ALF/DaCS

Compilers/Profiling/etc.

CellBE Linux

Cell Blade

DaCSd

Accelerated Lib

ALF/DaCS

Compilers/Profiling/etc.

CellBE Linux
Roadrunner nodes have a memory hierarchy

CB2 Cell blades

256 KB of "working" memory (per SPE)
25.6 GB/s off-SPE BW
~200 GB/s per Cell on EIB bus

4 GB of shared memory (per Cell)
21.3 GB/s/chip

8 GB of NUMA shared memory (per node)

PCIe x8
(2 per blade)
(2 GB/s, 2 us)

One Cell chip per Opteron core

2 GB of memory (per core)

4 GB of shared memory (per socket)
5.4 GB/s/core

8 GB of NUMA shared memory (per node)

LS21 Opteron blade

ConnectX IB 4X DDR
(2 GB/s, 2 us)
Three types of processors work together.

- **Parallel computing on Cell**
 - data partitioning & work queue pipelining
 - process management & synchronization

- **Remote communication to/from Cell**
 - data communication & synchronization
 - process management & synchronization
 - computationally-intense offload

- **MPI remains as the foundation**