Unleashing the Power of the Cell Broadband Engine

David A. Bader
Mission: grow the community of Cell Broadband Engine users and developers

• Fall 2006: Georgia Tech wins competition for hosting the STI Center

• First publicly-available IBM QS20 Cluster

• 200 attendees at 2007 STI Workshop

• Multicore curriculum and training

• Demonstrated performance on
 – Multimedia and gaming
 – Scientific computing
 – Medical applications
 – Financial services

http://sti.cc.gatech.edu

David A. Bader, Director
Cell Libraries: FFT and JPEG2000

- **FFTC: Fastest Fourier Transform on the Cell/B.E.**
 - 1-Dimensional single precision DIF-FFT optimized for 1K-16K complex input samples
 - Parallelize & optimize computation of a single FFT computation
 - Design high performance synchronization barrier using inter-SPE communication
 - Demonstrated superior performance of 18.6 GFlop/s for 8K complex input samples.

- **JPEG2000 on the Cell/B.E.**
 - Optimize coding/decoding by data decomposition / data alignment / vectorization
 - Demonstrated average speedup of 3.1 over Intel 3.2 GHz Pentium-4

The source code is freely available from our CellBuzz project in SourceForge [http://sourceforge.net/projects/cellbuzz/]
Cell Libraries: ZLIB and MPEG-2

- **ZLIB Data compression & decompression library**
 - Vectorize compute intensive kernels and parallelize to run on multiple SPEs
 - Extend the gzip header format while maintaining compatibility with legacy gzip decompressors
 - Demonstrated **speedup of 2.9** over high-end Intel Pentium-4 system

- **MPEG-2 Video Decoding**
 - First parallelization of a multimedia application on Cell/B.E.
 - Demonstrated a **speedup of 2** over Intel 3.2GHz Xeon using 8 SPEs. **Speedup of 10.55** over a PPE-only implementation

- Optimizing **NAS Parallel Benchmarks** on Cell/B.E. using the IBM XL C/C++ multicore acceleration single source compiler (SDK 3.0)

The source code is freely available from our CellBuzz project in SourceForge
http://sourceforge.net/projects/cellbuzz/
Cell Applications: Financial Modeling

Lets Talk about Money!

Financial Modeling on the Cell/B.E.

- **Objective:** Demonstrate a competitive edge of the Cell/B.E. for Financial Services.
- **European Option Pricing.** Black - Scholes equation: \(dS(t) = \mu S(t)dt + \sigma S(t)dW(t) \)

- **Collateralized Debt Obligation (CDO) pricing**

- **Monte Carlo simulation**

- **Performance results:**
 - Speedup of 20 of our optimized implementation of Mersenne Twister random number generator on Cell/B.E. over most commodity processors.
 - European Option Pricing:
 - 1.5x over optimized CUDA implementation for NVIDIA G80.
 - 2x over optimized implementation for RapidMind on Cell.
 - Double precision is essential.